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Dummy variables represent categories.  Use dummy variables if you want to find out if being in a certain
category makes a difference, compared with not being in that category.  

It's called a dummy variable because its values are all either 0 or 1.  “Dummy” is an adjective, not a noun. 
You give the dummy variable a value of 1 for each observation that is in some category that you have
defined.  You give the dummy variable a value of 0 for each observation that is not in the category.  For
any such category, either you’re in or your out, so no values other than 0 or 1 are allowed.  In a
spreadsheet, a dummy variable looks like a column of 0's and 1's.

For example, if you are doing a study where your observations are of men and women, and you think
gender matters, you can create a dummy variable that's 0 for men and 1 for women (or 0 for women and 1
for men – either way is OK).   

When you do the regression and get your results, the estimated coefficient of a dummy variable shows
how much difference it makes to be in the category for which the dummy variable is 1.  

For example, suppose your equation is:  Weight = a + b×Height + c×Gender, and Gender is 0 for men
and 1 for women.  Your estimate of c is how much more women weigh than men, given their height. 
Since women generally weigh less than men of the same height, c will be a negative number.  c can be
interpreted as how much less women weigh than men, with the height difference controlled for.

If you have more than two categories, and each observation in your data is in one and only one of those
categories
• use a separate dummy variable for each category,
• but always use one less dummy variable than you have categories.  

For example, suppose we divide S.C. into three regions:  Piedmont, Midlands, Coast.  We have data for
each county for income and hospital bed-days.  We expect that income affects the demand for bed-days. 
We want to see if region also matters.  We can define a dummy variable called Piedmont that is 1 for
Piedmont counties and 0 for other counties.  We can define a Midlands dummy variable that is 1 for
Midlands counties and 0 for other counties.    We can also define a Coast dummy variable that is 1 for
coastal counties and 0 for the others.

Our equation, though, must include only two of those dummy variables, not all three.  For example, we
might choose to estimate areas BedDays = a + b×Income + c×Piedmont + d×Midlands + error 

Why not also include a dummy variable for Coast?  If your categories are exhaustive (every observation
is in one of your categories) and mutually exclusive (no observation is in more than one category), then
you must not put dummies for all the categories in the same equation, unless you leave out the intercept. 
Violate this and the mathematical algorithm that least squares uses won't work.  

The reason, and it's subtle, is that you have perfect multicollinearity among your dummies and the
intercept.   In the S.C. regions example, if Coast = 1 for Coast areas and 0 for elsewhere, and every
observation is Coast or Piedmont or Midlands, then Coast = 1 - Piedmont - Midlands.  This is a linear
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            A        B        C        D        E        F

    1            Time     SalesE6  1st Qtr  3rd Qtr  4th Qtr

    2   1957_1          0      2.4        1        0        0

    3   1957_2          1      2.9        0        0        0

    4   1957_3          2      2.9        0        1        0

    5   1957_4          3        5        0        0        1

    6   1958_1          4      2.4        1        0        0

    7   1958_2          5        3        0        0        0

    8   1958_3          6      2.9        0        1        0

    9   1958_4          7      5.1        0        0        1

    10  1959_1          8      2.6        1        0        0

    11  1959_2          9      2.9        0        0        0

    12  1959_3         10        3        0        1        0

    13  1959_4         11      5.2        0        0        1

    14  1960_1         12      2.5        1        0        0

    15  1960_2         13        3        0        0        0

    16  1960_3         14      2.9        0        1        0

    17  1960_4         15        5        0        0        1

relationship among your variables.  That fits the definition of multicollinearity.  

In your regression results, the coefficient of any particular dummy variable shows the difference between
being in that category and being in the category whose dummy variable is not in the equation.  In the S.C.
regions example, if we leave out Coast, so that the equation is
BedDays = a + b×Income + c×Piedmont + d×Midlands + error ,
then the coefficient of Piedmont is the average difference in BedDays between Piedmont and Coast.  

In a multiple-category situation like this, it doesn't matter which dummy you leave out.  You will get the
same predictions regardless.  

The alternative to leaving out one dummy is to leave out the intercept and put dummies in for all your
categories.  In results you get with this approach, each dummy's coefficient is the intercept for
observations in its category.

An example:  These
data, from Wonnacott
and Wonnacott, show
jewelry sales by quarter
of the year (1957_1
means January-March
1957) in millions of
dollars (what E6 means)
for Canada in the C
column.  The B column
has a time trend
variable.  Columns D,
E, and F have dummy
variables for the 1st,
3rd, and 4th quarters
respectively.  The
second quarter is left out, so the coefficients of these dummy variables will measure the difference
between each of the other quarters and the second quarter.   In columns D, E, and F, the value is 1 for
observations in the quarter that the column represents.  The value is 0 in the other quarters.

The regression equation is SalesE6 = a + b1×Time + b2×1stQtr + b3×3rdQtr + b4×4thQtr . 
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Dependent Variable:  SalesE6            Observations:  16

Variable       Coefficient    Std Error      T-statistic     P-Value

Time            .00562500      .00420953      1.3362526      0.2084511

1st Qtr        -.46937500      .05341299     -8.7876564      0.0000026

3rd Qtr        -.03062500      .05341299     -.57336240      0.5779328

4th Qtr         2.1137500      .05390833      39.210082      0.0000000

Intercept       2.9106250      .04781111      60.877590      0.0000000

                                              These test hypothesis

                                              that coefficient is 0.

          Sum of Squares   Degrees of Freedom    R-Squared     F for Equation

Regression   16.3370000              4           0.996197      720.269

Residual     .062375000             11           Adjust R-Sq   P Value

TOTAL        16.3993750                          0.989647      0.00000

The
results
show an
overall
upward
trend of 
$0.00562
5 million
per
quarter,
based on
the
estimated
coefficient of the Time variable. The 1st Qtr coefficient says that 1st quarter sales average $0.47 million
below an overall trend line at the 2nd quarter level.  The 3rd quarter isn't significantly different from the
2nd quarter. The 4th quarter averages $2.11 million higher than an overall trend line at the 2nd quarter
level.  

This graph shows the data, and a trend line at
the average 2nd quarter level, based on the
regression results' time coefficient and intercept. 
The line's slope is $.005625 million (or $5625)
per quarter and its intercept is $2.91 million. 
The 2.1137500 coefficient of the 4th quarter
dummy variable tells us that 4th quarter sales
average $2,113,750 above that line.  The 1960
4th quarter was actually $2,005,000 above that
line, so that quarter's sales were $108,750 below
the trend.

This graph shows the regression lines for each
quarter.  Fitting an equation with dummy
variables is like fitting a bunch of parallel lines,
with one line for each category.  The 2.11375
coefficient for the fourth quarter dummy means
that the 4th quarter observations’ line
is$2,113,750 above the 2nd quarter observations’
line.  

The observed value for the 4th quarter of 1960, in
the upper right corner of the graph, is below the
4th quarter line by $108,750.  Jewelry sales during
the 4th quarter of 1960 were lower than expected.
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Time Series Theory

Time series analysis is looking at data gathered over time.  Time series analysis involves a time trend
variable and dummy variables that the researcher constructs.

A time series can be decomposed into
• Trend
• Seasonal fluctuation that repeats
• Shifts in trend
• Tracking of errors (“autocorrelation”)

Let’s look at these in turn:

1. Trend
Trend can be represented by a variable that goes 1,2,3, ..., etc. 
A linear equation would be Y = " + $t + other terms
A constant growth curve would be ln(Y) = " + $t + other terms

2. Seasonal fluctuation
Provides seasonal predictions.
"Season" can be day, week, month, or season, etc., anything that recurs regularly.  

You may not need to bother about seasonal adjustment if all you care about is estimating the time
trend.  You may be able to get by with estimating $ in the simple equation Y = " + $t.  However,
as Wonnacott and Wonnacott’s jewelry data show, sometimes leaving out seasonal adjustment
can give you a biased estimate of $.

To calculate seasonal fluctuation, create a dummy variable for each season   When doing the
regression, leave one season out of your independent variables, or leave the intercept out.

3. Shift in trend.  
If there are a block of observations that are out of line, and you can identify something special
about that time period, use a dummy variable whose value is 1 during the period and 0 otherwise. 
This dummy is in addition to any seasonal dummies.  

4. Tracking of errors, or “autocorrelation” of the errors
If errors “track,” meaning that the errors follow each other, so that if one error is positive then
the next error is likely to also be positive, this violates the assumption that the covariances of the
errors are zero.  Least squares is no longer the best way to analyze the data.  Other techniques are
available, however.  One is to fit a curve, by transforming the data.  If the autocorrelation
persists, you can use the difference between one time period’s Y value and the previous time
period’s Y value as the dependent variable.  That technique is beyond the scope of this course.  

How to interpret the coefficient of a time or dummy variable in an equation with a dependent

variable that is a logarithm.

I'll use an equation with only one dummy variable.  This simplifies the math.  The principles apply the
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   $   e$ - 1   Percent

_____________equivalent____

   1    1.718   171.8%

  .3     .350    35.0%

  .1     .105    10.5%

 .05     .051     5.1%

 .01     .010     1.0%

   0     .000      .0%

-.01    -.010    -1.0%

-.05    -.049    -4.9%

 -.1    -.095    -9.5%

 -.3    -.259   -25.9%

  -1    -.632   -63.2%

How b and e
b
-1 differ 

same to equations with several variables.  

Suppose that the equation is:

Ln(Y) = " + $×Time + (×Dummy Time goes 1, 2, 3, etc.  Dummy is 0 for some
time periods and 1 for the others.  

Let's first consider $, the coefficient of Time.  As an approximation, you can say that Y is growing at the
rate of 100%×$ per year.  For example, if $ is .01 and Time is in years, then you can say Y is growing at
about 1% per year.  

As pointed out earlier, this is only an approximation.  It is good only if $ is close to 0.  Let us look again
at the above equation and figure out what happens to Y when Time goes up by 1.  
If we replace Time with Time+1, we get " + $×(Time+1) + (×Dummy.  
This equals " + $×Time + $ + (×Dummy.
The difference between this and  " + $×Time + (×Dummy is just $.
So, when Time goes up by 1, Ln(Y) goes up by $. 
That means that Y is multiplied by e$.  ( e Ln(Y) + $ = e Ln(Y) e$ = Y e$ )
In percentage terms, multiplying Y by e$ means increasing Y by 100×( e$ - 1 ) percent.  

Here is a table showing some $ values and the percent
equivalent of e$ - 1.  

I would say that if $ is between -0.05 and 0.1, then $ is
small enough so you can just multiply $ by 100 and call
that the monthly percent change in Y.  For example, if $ is
.01, you can say that Y is changing by 1% per month.  If $
is bigger than 0.1 or more negative than -0.05, use the e$ - 1
formula to get the percent equivalent.  For example, if b is 1
then the monthly rate of change is 171.8%.  (If your
numbers show that something is growing this fast, check
for a mistake!)

Often, in write-ups of equations like this, $ is said to be the
estimated “rate of growth” in Y.  Yet, the preceding
paragraphs say that, on average, Y grows to more than
Y×(1+$) in one unit  of time.  So, is the rate of growth really $ or is it a little more than $?  

The answer is that $ is the continuously compounded rate of growth.  Suppose you have a savings
account whose nominal interest rate is 5% per year.  If interest is paid and compounded continuously, 
money left in the bank for one full year will grow by 5.1% over the course of the year.  

Now let’s interpret (, the coefficient of the ( dummy variable in our equation, 
Y=" + $Time + (Dummy.  
The interpretation this ( is similar to the interpretation of $.  We also use the table above.   If ( is
between -0.05 and 0.1, then you can say that the time periods when the dummy is 1 have, on the average,
100×( percent more surgeries than the time periods when the dummy is 0.  If ( is not this small, use the
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table above or a spreadsheet to calculate 100%×(e( - 1).  For example, if ( = 0.3 then the time periods
when the dummy is 1 have 35% more surgeries than the other time periods.

Advanced stuff:  A further refinement

The interpretation suggested above is slightly biased.  It tends to slightly overstate the effect of a unit
change in time or in the dummy variable, because of the non-linearity in our equations.

A less-biased interpretation can be obtained by adding another term to the e$-hat - 1 formula, like this:

The V-hat of beta-hat term is the estimated variance of your estimate for $.  The estimated variance is the

square of the standard error of the coefficient, which is typically shown in your regression results.

If your estimated coefficient is statistically significant, and the estimated coefficient (beta-hat) is not
much bigger than 1, then this correction will make little difference, compared with just using e$-hat - 1,
because the square of the standard error will be a small fraction.   Still, we have run into journals that
insist that this correction be made.

This correction was published in Peter E. Kennedy, “Estimation with Correctly Interpreted Dummy
Variables in Semilogarithmic Equations,” American Economic Review, Volume 71, No. 4, Sept. 1981, p.
801.  Kennedy is the author of A Guide to Econometrics, MIT Press, now in its fifth edition.  If you are
interested in learning more about regression, I highly recommend Kennedy’s book as a readable survey
of econometric theory.  The 4th edition’s General Notes, section 14.2, gives the e$-hat - 1 formula.  It does
not mention the more complex formula shown above that Kennedy himself developed.


