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Assessing how good the regression equation islikely to be

Assignment 1A gets into drawing inferences about Hogeche regression line might be to the true line.
We make these inferences by examining how closedtzepmbints are to the regression line we drawhdf t
data points line up well, we infer that our regressimmmis likely to be close to the true line. If owatd
points are widely scattered around our regressionMeeconsider ourselves less certain about where the
true line is.

If we are unlucky, the data points will fool us by lijiap very well in a wrong direction. Other times,
again if we are unlucky, the data points will failitee up very well, even though there really is a
relationship between our X and Y variables. If thosegs happen, we will come to an incorrect
conclusion about the relationship between X and Y. Hhgsi testing, which we discuss soon, is how we
try to sort this out.

In Simple Regression Theory I, | discussed the assamitat the observed points come from a true line
with a random error added or subtracted. | calledAksumption 1, rather than just The Assumption,
because there we will need some more assumptionswaweto make inferences about how good our
regression line is for explaining and predicting.

Let’s review the notation that we are using: Eadia g@int is produced by this “true” equation:
Y,=a+pX;+€e . This equation says that tike data point’s Y value is the true line’s interceptisptheith X
value times the true line’s slope, plus a random ertbatis different for each data point. That is
Assumption 1 expressed with algebra.

Once we accept Assumption 1, there are two paraméiersue slop@ and the true intercepi that we
want to estimate, based on our data.

An estimate is a specific numerical guess as to what some unkpavameter is. In the Assignment 1A
instructions, page 2, the example spreadsheet shows 0.06 785 estsnate of the true slope The word
“estimate” in that sentence is important. 0.067885wt$. It is anestimate of .

An estimator is a recipe, or a method, for obtaining an estimaiau have used two estimatorspof
already. One is the eyeball estimator (plot the ppuhtaw the line, inspect the graph, calculate tige¥lo
The other is the least squares estimator (type tiaeint® a spreadsheet, implement the least squares
formula, report the result).

Here’s an idea that can take some getting useBstmates are random variables. This may seemalike
funny idea, because you get your estimate from your dadavever, if you use the theory we have been
developing here, each Y value in your data is a randomble. That is because each Y value includes the
random error that is causing it to be above or belewrtle line. Your estimates of the intercept and
slope,a andp (“alpha-hat” and “beta hat”), derive from these Yues. Thex andp that you get from any
particular data set depends on what the erravere when those data were generated. This makes y
estimates of the parameters random variables.
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In assignment 1, everybody in the class had datathgtlsame true slope and intercept, but different errors
As a result of the different errors, everybody gfedent values forn andp. That is what it means to say
that the estimates ofandp are random variables.

Because each estimate is a random variable, eactatsti(recipe for getting the estimate) has what is
called asampling distribution. This means that each estimator, when used inteydar situation, has an
expected value and a variance — expected spread. Asgfoodter — a good way of making an estimate —
would be one that is likely to give an estimate thaose to the true value. A good estimator woulceha

an expected value that is near the true value andanecarthat is small.

As mentionedAssumption 1 is that there is &rueline, and that the observed data points scatter around
that line due teandom error.

By adding more assumptions, we can use the samplimgpdison idea to move toward assessing how
good an estimator the least squares method is. aWalso use this idea to assess how good an estimato
the eyeball method is.

Assumption 2: The expected value of any error isO.

We can write this assumption in algebraic terms as:

Expected(g = O for all each observation (i numbers the observations from 1 to N),

This means that we assume that the points we observebsystematically above or below the true line.
If, in practice, there are more points, say, abovértieeline than below it, that is entirely due to ramd

error.

If this assumption is true, then the expected valudseaetst squares line's slope and intercept areude tr
line's slope and intercept. Algebraically, we cartevrExpected)) = o and Expected = B.

Those formulas mean that the least squares regrdissias just as likely to be above the true line as
below it, and just as likely to be too steep as to besteep enough. The slope and intercept estimates are
aimed at their targets. The jargon term for thighat the estimators anabiased.

The next two assumptions are about the variances aadaoeses of the observations’ error3. (e

Assumption 3: All the errors have the same variance. Expected(@ = o for all i

Expected(@) is the variance dth data point’s error;e The variance formula usually involves subtracting
the mean, but here the mean of each error is 0. iFhasumption 2, that the expected value &f @.

Notice that, in the formula Expected)e= 2, there is a subscripton the left side of the equals sign, but
noi subscript on the right side. This expresses the Idgatl the errors’ variances are the same.

| usec? ("sigma-squared") here for the variance of theretrecause that is the textbook convention.

All the errors having the same variance meansdihaft the observations are equally likely to be fant
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or near to the true line. No one observation is meable than any other, deserving more weight.

In almost any data set, some data points will beeclmsthe true line than others. This, we assume, is
entirely by luck. If one or two points stick way olite a basketball player in a room full of jockeys, we
have doubts about assumption 3.

Assumption 4: All the errors areindependent of each other.
Expected(@) = O for any two observations such that i #

Expected(@) is the covariance of the two random variabjené e. The assumption that this is 0 for any
pair of observations means this: If the one point happebe above the true line, it is not any moress le
likely that the next point will also be above the trine.l

A comment on making these assumptions

These assumptions 1 through 4 are not made just frodathe Rather, these assumptions must come
primarily from our general understanding of how theadeere generated. We can look at the data and get
an idea about how reasonable these assumptions arggnifent 2 does this.) Usually, we pick the
assumptions we make based on a combination of thefdbk data and our understanding of where the
data came from.

When you fit a least squares line to some points, yeungplicitly making assumptions 1 through 4.
When you draw a straight line by eye through a bungowits, you are also implicitly making
assumptions 1 through 4.

What if you are not comfortable with making thoseuagstions? Later in the course, we will get into
some of the alternative models that you can try vamenof more of these assumptions do not hold. For
example, we will talk about non-linear models. For nietvus stick with the linear model, which means
that we accept those assumptions.

Variances of the least squar es inter cept and slope estimates

Earlier, it was pointed out that the estimates ferdlope and intercept,andp, are random variables, so
each has a mean, or expected value, and a varianm@ aSsumptions 1 through 4, one can derive
formulas for the variances afandp when they are estimated using least squares. (Mootderive
formulas for the variances afandp when they are estimated using the draw-by-eye metiocestimate
those variances, you could ask a number of people toréigression lines by eye. That is what this class
does for Assignment 1!)

Here are formulas for the variances of the leastreguestimators af andp. (If you would like to see
how these formulas are derived, please consult ststatiextbook.)

Variance(ér):az[%+ N x ] Variance(f) = N
2 (X = %)’ 2, (X = X)?

0.2
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In these formulasy? is the variance of the errors. Asumption 3 saysradrs have the same variance,
which isc?.

One of the themes of this course is that you can samething from formulas like these, if you take the
trouble to examine them. Don't let them intimidatelyo

Each formula has? multiplied or divided by something. This means thatvariances of our regression
line parameters are both proportionattp the variance of the errors from the true equatién.
implication is that the smaller the errors are,léss randomness there is in auandp values, and the
closer our estimated parameters are likely to begtértie parameters.

In the formula for the variance ffthe denominator gets bigger when there are marant when those
X's are more spread out. A bigger denominator makesctaon smaller. This tells us something about
designing a study or experiment: If you want your esi® to come out close to the truth, get a lot of
observations that are spread out over a big rangdu#svaf the independent variable.

Those formulas have a major drawback: We cannottljinese them! That is because we don't know what
5
o IS.

What we can do is estimaté We call our estimateé,sand calculate it from the residuals like this:

N
2
2 _ =1

" N-2

In that expression, the residuals are designated biyhe numerator says to square each residual and then
add them all up, giving you the sum of the squareseofasiduals. (The least squares line is the lirte tha
makes this sum the smallest.)

S

To get the estimate of the variance of the ermesdivide the sum of squared residuals by N-2. That
makes the estimated variance like an average squesiedal. | say “like” an average squared residual
because we divide by N-2, rather than by N. Why dividBl-2, instead of N? Using N-2 allows for the
fact that the least squares line will fit the datddvehan the true line does. The least squaresslirmy

the definition of “least squares,” the line with greallest sum of squared residuals. Any other line,
including the true line, will have a larger sum of sgoaresiduals.

N-2 is thedegrees of freedom. In your introductory statistics course, you used fsadevhich the
degrees of freedom is N-1. For instance, when youna®d a population variance based on the data in a
sample of N from that population, the degrees of freedas N-1.

Why did you subtract 1 from N then, and why are we sabirg2 now? Then, to estimate the variance of
a population around the population’s mean, you used on&istahe mean of the sample. Now, we are
using predicted values calculated from two statisties slope and the intercept of the regression lire.
easier to get a predicted value that is close to gbservation when you have two estimated parameters,
instead of just one. Using N—2 allows for that.

In general, the number of degrees of freedom is WHere P is the number of parameters used to get the
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number(s) that you subtract from each observation’s value.

To repeat, the reason you subtract P from N in thas&tisins is that the estimated mean and the estimate
regression line fit the data better than the actualiladion mean or the true line would. The more
parameters you have, the easier it is to fit your ihtodie data, even if the model really is not gogd.

You have to make the degrees of freedom smallelat@rthe estimated variance come out big enough to
correct for this.

Substituting § for o2 in the formulas for the variancesfndp gives estimated variances foandp.
You just change every" into an "s".

A 1 X
Estimated Variance(q) = §* [N S E—
> (X - X)?
=1
R s°
Estimated Variance(f8) = w————
> (X, - X)?
i=1

Standard Error
Thestandard error of something is the square root of its estimatedaae.

s, the square root of,ds called thetandard error of theregression. Here is the formula:

p has a standard error, too. It's the square rotiteoéstimated variance fof

~ S
Sd.Error of S =

N
VAY
Z (Xi - X)
i=1
This measures of how much risk there is in uging an estimate @f
You can deduce from the formula that the risk in #ter&te offf is smaller if:
the actual points lie close to the regression lindffat s is small),

or
the X's are far apart (so that the sum of squaredvigtitens is big).

Hypothesistests on the slope parameter

To do conventional hypothesis testing and confidameevals, we must make another assumption about
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the errors, one that is even more restrictive:

Assumption 5 (needed for hypothesistesting): Each error hasthe normal distribution. Each error,e
has the normal distribution with a mean of 0 and &wae ofc>.

The normal distribution should be familiar from introthry statistics. The normal distribution’s density
function has a symmetrical bell shape. A normal remdariable will be within one standard deviation of
its mean about 68.26% of the time. It will be within tstandard deviations 99.54% of the time. This
means that, on average, 99.54% of your data points shewldser to the true line than 2 timés The
normal distribution is tight, with very few outliers.

If the errors are normally distributed, as assumptistates, then the following expression has the t
distribution with (Number of observations - 2) degreeseddom.

t = ﬁ _ﬁ
Standard Error(ﬁ)

If you would like to see this derived, please consusitagistics textbook. The general idea is that we use
the t distribution for this rather than the normakafistribution to allow for the fact that the regries line
generally fits the data better than the true linae fiegression line fits too well, in other worddsing the
wider t distribution, rather than the narrower nordiatribution, corrects for this.

A branching placein our discussion. At this point, we can either go through the meatgof hypothesis
testing, or we can discuss the basic philosophy of hgsat testing. Which is best for you depends on
what you already know about statistics and how younlear

1. For the philosophy discussion, please see the dovaliteaBhilosophy of Hypothesis Testing file.
Then come back here to see the mechanics.
2. If you want to see the mechanics first, continudingghere.

Hypothesis testing mechanics for simple regression
To use the t formula above to test hypotheses abouttihdh&iued is, do this:

1. Plug your hypothesized value fom where the is in this expression:

Usually, the hypothesized value is 0, but not always. Standafd]BError(ﬁ)
2. Plug in the estimated coefficient where fthe and put the standard error

of the coefficient in the denominator of the franti
3. Evaluate the expression. This is your t value.
4. Find the critical value from the t table (theraistable is in the downloadable file of tables) by

first picking a significance level. The most comnsagnificance level is 5%, or 0.05. That tells
you which column in the table to use Use the rowantttable that corresponds to the number of
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degrees of freedom you have. In general, the dedpedreedom is the number of observations
minus the number of parameters that you are estimafingsimple regression, the number of
parameters is 2 (the parameters are the slope antehzept), so use the row for

(Number of observations - 2) degrees of freedom.

5. The column and the row give you a “critical t valul your calculated t value (ignore any minus
sign) is bigger than this critical value from thable number, reject the hypothesized valugfor
Otherwise, you don't reject it.

In Assignment 1A, you will expand the spreadsheet frasighment 1 to include a cell that calculates the
value of the t fraction. This “t value,” as we vadll it, will be only for testing the hypothesis tlkae true
Bis 0. This will do steps 1, 2, and 3 for you.

In step 5 above, you are supposed to ignore any minus Bigat.is because we are doing a “two-tailed”
test. We do this because we want to reject hypottgesalues for the true slope that are either too drigh
too low to be reasonable, given our data. The colwradihgs in the t table in the downloadable file show
significance levels for a two-tailed test.

Some books present their t tables differently. Theyelheir tables on a one-tailed test, so they hawe y
use the column headed 0.025 to get the critical value fiao-tailed 0.05-significance-level test. The
critical value you get is the same, because the t tahie at the 0.05 significance level for a two-tailed
test is equal to the t table value at the 0.025 signidiesevel for a one-tailed test. When you use other
books’ t tables, read the fine print so you know witiclumn to use.

Significance levels and types of errors

Why use a significance level of 0.05? Only becaus¢h€snost common choice. You can choose any
level you want. In choosing a significance level) are trading off two types of possible error:

1. Type 1 error: Rejecting an hypothesis that's true
2. Type 2 error: Refusing to reject an hypothesisstialse

If you are testing the hypothesis that the true sl which is what you usually do, then these become:

1. Type 1 error: The true slope is 0, but you say that therslope. In other words, there
really is no relationship between X and Y, but you famirself into thinking that there is a
relationship.

2. Type 2 error: The true slope is not 0, but you say tledirtie slope might be 0. In other

words, there really is a relationship between X anpdut you say that you are not sure
that there is a relationship.

Smaller significance levels, like 0.01 or 0.001, make Tlyperors less likely. Actually, the significance
levelis the probability of making a Type 1 error. At a 0.001 sicgunce level, if you do find that your
estimate is significant, you can be very confideat the true value is different from the hypothesized
value. You will only be wrong one time in a thousafifdyour hypothesized value is 0, which it usually is,
you can be very confident that the true parameterti®.néf what you are testing is your estimate of the
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slope, which it usually is, then you can be very confidleat the slope is not 0 and that there really is a
relationship between your X and your Y variables.

The drawback of a small significance level is thatdreases the probability of a Type 2 error. With a
small significance level, it is more likely thatwmwvill fail to detect a true relationship between X &hd
With a small significance level, you are demandiwgravhelming evidence of a relationship being there.

The ideal way to pick a significance level is togtethe consequences of each type of error, and pick a
significance level that best balances the costs. tWésaarchers often do, however, is pick .05, because
they know that this significance level is generaltgepted.

Watch out for confusing or contradictory terminology:

1. “o-level” of significance. The significance levelsesmetimes called thelevel. Try not to confuse this
with the intercept of a linear regression equation.

2. "High” significance level. A low “alpha” number &“high” level of significance. If you reject the
hypothesis that a coefficient is O at the 0.001 leval, ¢befficient is “highly” significant.

3. 95% significance or 0.05 significance. These temadnéerchangeable. The same goes for 99%
significance or 0.01 significance.

Usually, the context will enable you keep these straight
Confidenceintervals for equation parameters

An alternative way to test hypotheses alfbist to calculate a confidence interval foand then see if your
hypothesized value is inside it. The 95% confidents\val (two-tailed test) fop is:

A a A S

95% confidence interval P * foos Standard Error(B) = P+ to.osN=

for the slope estimate Z(Xi -X)?
i=1

Thet, o5 In the formulas above means the value front table in the column for the 0.05 significance level
for a two-tailed test and the row for N-2 degreefeddom. For a 99% confidence interval, you would use

tO.OZL'

The + means that you evaluate the expression onceawitto get the top of the confidence interval, then
you evaluate it with a - to get the bottom.

This confidence interval is called “two-tailed” bese it has a high end and a low end that are etantlis
from the estimated value. That is what the + d¢@sone-tailed confidence interval would have ong en
that is above the estimated value and go off to mnfusty to the left, or it could have one end that
below the estimated value and go off to plus infiratyhte right.)

Look now at the right hand version of the confidemterval formula above. Let’'s explore the underlying
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relationships. The s in the numerator tells us timatonfidence intervals for the coefficients gegbigf

the residuals are bigger. The denominator tells aishfiving more X values and having them more spread
out from their mean makes the confidence intervalllem Again, this tells us that we gain confidemce

our estimate if the residuals are small and if weslalot of spread-out X values.

For the intercepiy, the 95% confidence interval is:

1 X

S | —+

N JE—
> (X,-X)?
i-1

a1y

Confidenceinterval for the prediction of Y

We can also calculate confidence intervals for aigtied. Let X, be the X value for which we want the

predicted Y value. We'll call that predicted Y vallig YW, = d + X, .

The 95% confidence interval for the prediction is:

5 1 (){0_)—()2

Yo & lyos § =+ﬁ+l
> (x,-X
=1

Here's what we can see in this expression: The @d@&linterval is the big expression to the right ef#h
The width of this confidence interval depends onstiva of squared residuasind depends inversely on

Y (X;-X ¥, the sum of the squared deviations of the X valu@s their mean. Big residuals, relative to the
spread of the X's, make s big, which makes the camfig intervals wide. More X values, or more spread-
out X values, makg (X;-X ¥ expression larger, which makes the confidence iaterarrower. The

(X4~X)? expression in the numerator under the square rootaigius that confidence interval gets wider
as the X you choose gets further from the mean of the X's.
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R?, a measur e of fit

An overall measure of how well the regression liteethe points is R(read "R squared”). Rs always
between 0 (no fit) and 1 (perfect fit).2 Bhows on how big the residuals are in relation ecdtbviations of
the Y's from their mean. It is customary to say tha R tells you how much of the variation in the Y's is
"explained" by the regression line.

M=

¥,-7)
R2 — 1_1 1

(¥,-1)?

M=

i

1}
—

Notice that the only difference between the top &edobttom of the fraction is that the top has y-bat$
the bottom has y-bar. The y-hats are the predictee@sdor Y from the regression equation. Y-bar is the
average of the Y values.

Here is the Rformula in words:

N
Y (¥-ry .

11 - 1- Sum of the squares of the residuals
i % 17)2 Sum of the squares of the distances of the Y values from their mean
il

The R-Squared tells you how much your ability to predichggoved by using the regression
line, compared with not using it.

The least possible improvement is 0. This is if tlgression line is no help at all. You might as
well use the mean of the Y values for your prediction.

The most possible improvement is 1. This is if theesgion line fits the data perfectly.

That is why the R-squared is always between 0 and 1rebnession line is never worse than
worthless (0), and it can't be better than perfect (1).

Some statistical software reports an "adjusted" R-squatesiallows for the fact that an
X variable that is really completely unrelated to y¥wariable will probably have some
relationship to Y in your data just by luck. The adjustesRared reduces the R-squared
by how much fit would probably happen just by luck. Sometithes reduction is more
than the calculated R-squared, so you can have an adjustathfed that is less than O.

All conclusions from the R-squared are based on the @$guns behind using least squares being
true. If those assumptions are not true, then it isipledtat using the regression line to predict
would be worse than worthless.
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Correlation

“Correlation” is a measure of how much two variableslmearly related to each other. If two variaples
X and Y, go up and down together in more or lessaagstt line way, they are “positively correlatedf’Y

goes down when X goes up, they are “negatively cee!”

In a simple regression, the correlation is the sqr@otof the regression’s?R For this reason, the
correlation (also called “the correlation coeffiti is designated as r.

An alternative formula for r is:

The correlation _— i=1
coefficient \J

r can range from -1 to +1

With some algebra, you can show that r Bnd are celdiltiply the top and bottom of the r formula
by the square root of the sum of the squares of theiatas. You get this:

N _ _ N _
X011 T

N _ N _
S0P, D7
i=1 i=1

Look at the parts of this fraction that are not urstgrare root symbols. These are the left halveseof t
numerator and denominator. Do you recognize thetiheasame as the formula for the least squres

vy =

N —
> (X,-X)
.-\

N —
| Z@-1y
i=1

The higher the slope of the regression line is @igtbsolute value @f), the higher r is. When X and Y
are not correlated, r = 0. According to the formali@ve, must be 0 as well. So, if X and Y are
unrelated, the least squares line is horizontal.



SIMPLE REGRESSION THEORYI 12
Durbin-Watson Statistic

In Assignment 2 you will see that the regular goodioédis statistics (R and t) cannot detect situations
where a linear least squares model is not appropridte.Durbin-Watson statistic can detect some of
those situations. In particular, the Durbin-Watsongtatests for serial (as in "series") correlatadrthe
residuals.

Here is the Durbin-Watson statistic formula:

N
Z (u _L%—l)z
DW = =2—

5

A rule-of-thumb for interpretation of DW:

(Theu's in this formula are the residuals.)

DW < 1 indicates residuals track each other. A pa@sitesidual tends to be followed by another
positive residual. A negative residual tends to devi@d by another negative residual.

DW near 2 indicates no serial correlation.

DW > 3 indicates residuals alternate, positive-negginsitive-negative..
For a more formal test, see the Durbin-Watson taltlesiiownloadable file of tables.
Serial correlation of residuals indicates that you da better than your current model at predicting.st.ea
Squares assumes that the next residual will be 0. ri theerial correlation, that means that you can
partly predict a residual from the one that came before
If the Durbin-Watson test finds serial correlatidnpay indicate that a curved model would be better than
a straight line model. Another possibility is thiag true relationship is a line, but the error in one

observation is affecting the error in the next obdema If this is so, you can get better predictiorni\a
more elaborate model that takes this effect intoauic



